#### REGIONAL INEQUALITIES IN YEARS OF LIFE LOST WITHIN THE EUROPEAN ECONOMIC AREA: USING THE GINI COEFFICIENT AND SLOPE INDEX OF INEQUALITY TO ASSESS SPATIAL DISPARITIES

José Chen-Xu, MD · Orsolya Varga, PhD · Nour Mahrouseh, MPH · Prof Terje Andreas Eikemo, PhD · Diana A Grad, MPH · Grant M A Wyper, PhD · Andreea Badache, MSc · Mirza Balaj, PhD · Periklis Charalampous, PhD · Mary Economou, PhD · Juanita A Haagsma, PhD · Romana Haneef, PhD · Enkeleint A Mechili, PhD · Brigid Unim, PhD · Elena von der Lippe, PhD · Carl Michael Baravelli, PhD

#### BACKGROUND I.

- Health inequalities have been linked to reduced life expectations.
- This study aimed to investigate regional variations in all-cause years of life lost (YLLs) in European Economic Area (EEA) countries prior to the COVID-19 pandemic.



## BACKGROUND II.

- Although health inequalities are typically addressed as a European or national concern, they also require action at the subnational level.
- Subnational YLL estimates in the EEA allow for consistent comparisons of geographical inequality in premature mortality across and within countries, and are a key metric in Global Burden of Disease studies.

## METHODS I.

- Demographic data were extracted from Eurostat for 1390 small regions 32 EEA countries.
- Age-standardised sex specific YLL rates per 100,000 population in 2019 were estimated for EEA regions (Eurostat NUTS level 2 and 3) using methodologies derived from the Global Burden of Disease study.

## METHODS II.

• We assessed inequalities:

1.Relative inequalities (Gini coefficient), between regions (NUTS 3, NUTS 2).

<u>Higher Gini values indicate greater inequality (100% =</u> <u>complete inequality, 0% = equality).</u>

2.Absolute inequalities (slope index of inequality (SII)), across NUTS 2 or NUTS 3 regions.

SII shows the average difference in YLLs between the most and least advantaged regions, based on rankings and population distribution across NUTS 2 or NUTS 3 regions.

## RESULTS I.

- The relative within-country geographical inequality in agestandardised YLLs in 2019 by subnational regions (NUTS 3), measured by the Gini coefficient, was generally low.
- The overall relative geographical inequality in YLLs was larger between EEA countries rather than within EEA countries, and slightly greater for males (16.96% [16.26– 17.65]) than for females (14.22% [13.62–14.82].



Relative within-country inequalities in age-standardised YLL rates for females and males measured using the Gini coefficient based subnational regions (NUTS 3), 2019

# RESULTS III.

• In absolute terms, the largest geographical inequality in YLLs in 2019 for all NUTS 3-level regions was 20.43% (20.00 to 20.86) for females and 41.3% (40.03 to 42.49) for males .



Absolute within-country inequalities in age standardised YLL rates for females and males measured using the slope index of inequality based subnational regions (NUTS 3), 2019

## RESULTS V.

- Gender differences in relative inequality (2009-2019): Relative geographical inequalities in YLLs decreased for females (AAPC –0.19%) but increased for males (AAPC 0.54%).
- Absolute inequality trends: No significant change in absolute geographical inequality for females, but for males, absolute inequality decreased ( $\beta$ SII = -0.0037).
- Country-specific:

|        |                | Females     |                   |            |                | Males       |                   |
|--------|----------------|-------------|-------------------|------------|----------------|-------------|-------------------|
| Rank   | country        | $AAPC_{GC}$ | (95% CI)          | Rank       | Country        | $AAPC_{GC}$ | (95% CI)          |
| I      | Hungary        | 3 .69       | (2.05 to 5.37)    | <b>→</b> 1 | Romania        | 5·I3        | (2 ·7 to 7 ·62)   |
| 2      | Finland        | 2 .53       | (-7 ·5 to 13 ·65) | 2          | Norway         | 2.35        | (-I ·47 to 6 ·32) |
| 3      | Switzerland    | I ·87       | (-2·2 to 6·11)    | 3          | Switzerland    | 2.11        | (-1 ·11 to 5 ·43) |
| 4      | Germany        | I ·76       | (0 ·83 to 2 ·7)   | 4          | Italy          | 2           | (-0 ·17 to 4 ·22) |
| 5      | Belgium        | l •66       | (0.41 to 2.93)    | 5          | Bulgaria       | I ·81       | (-0 ·59 to 4 ·27) |
| 6      | United Kingdom | I ·32       | (0 ·55 to 2 ·09)  | 6          | Belgium        | I ·55       | (0.83 to 2.27)    |
| 7      | Sweden         | l ·29       | (-3 ·18 to 5 ·97) | 7          | Hungary        | 1.31        | (-0 ·28 to 2 ·92) |
| B      | Czechia        | I ·09       | (-0 ·52 to 2 ·72) | 8          | Greece         | 0.7         | (-1 07 to 2 5)    |
| -<br>9 | Greece         | 0.11        | (-2 88 to 3 2)    | 9          | Netherlands    | 0 .53       | (-3 ·18 to 4 ·39) |
| 0      | Norway         | 0.11        | (-2 64 to 2 94)   | 10         | Austria        | 0.51        | (-0.81 to 1.85)   |
| 11     | France         | 0 04        | (-0 ·72 to 0 ·81) |            | United Kingdom | 0 •42       | (-0·39 to 1·23)   |
| 12     | Netherlands    | -0.19       | (-3 ·25 to 2 ·97) | 12         | Germany        | 0.2         | (-0 47 to 0 88)   |
| 13     | Spain          | -0 ·22      | (-1 64 to 1 22)   | 13         | Czechia        | 0.02        | (-1 ·13 to 1 ·18) |
| 14     | Denmark        | -0 .32      | (-4 ·78 to 4 ·35) | 14         | Sweden         | 0.02        | (-3 ·22 to 3 ·37) |
| 15     | Italy          | -0 •43      | (-2.03 to 1.2)    | 15         | Spain          | -0 •49      | (-2 ·47 to 1 ·53) |
| 16     | Portugal       | -0·81       | (-3 ·42 to 1 ·86) | 16         | France         | -0.51       | (-1 ·19 to 0 ·17) |
| 17     | Bulgaria       | -0 .97      | (-3 ·97 to 2 ·12) | 17         | Portugal       | -0 ·75      | (-2 41 to 0 95)   |
| 8      | Austria        | -1 •1       | (-3 ·67 to 1 ·55) |            | Finland        | -I ·23      | (-9.32 to 7.57)   |
| 9      | Poland         | -1 ·38      | (-2.89 to 0.16)   | 19         | Poland         | -I ·3       | (-2.23 to -0.36)  |
| 20     | Romania        | -2·28       | (-5 08 to 0 6)    | 20         | Denmark        | -4·82       | (-8 82 to -0 65)  |
| - •    |                |             |                   | - 20       |                |             |                   |
|        |                |             |                   |            |                |             |                   |

# Average annual percentage change (AAPC) in the relative inequalities using Gini coefficient of subnational regions (NUTS 2)YLLs from 2009-2019, per sex and country and across all EEA regions

| EEA | -0 ·19 | (-0 60 to 0 22) | EEA | 0 ·54 | (0·19 to 0·89) |
|-----|--------|-----------------|-----|-------|----------------|
|-----|--------|-----------------|-----|-------|----------------|

Average annual change in the absolute inequalities using slope index of inequality of subnational regions (NUTS 2) YLLs from 2009-2019, per sex and country and across all EEA regions

|      | Females      |           |                                   |            | Males        |           |                         |  |
|------|--------------|-----------|-----------------------------------|------------|--------------|-----------|-------------------------|--|
| Rank | country      |           | β <sub>SII</sub> ( <b>95%</b> CI) | Rank       | Country      | βs        | <sub>;ii</sub> (95% CI) |  |
|      | United       |           |                                   |            |              | 0.0059    |                         |  |
| I.   | Kingdom      | 0.0026    | (0 0015 to 0 0036)                | • • • •    | Romania      |           | (0.0021 to 0.0097)      |  |
| 2    | Hungary      | 0.0023    | (0.0009 to 0.0037)                | 2          | Bulgaria     | 0.0019    | (-0.0029 to 0.0066)     |  |
|      |              |           |                                   |            | United       | 0.0014    | <b>`</b>                |  |
| 3    | Finland      | 0.0007    | (-0 0026 to 0 0040)               | 3          | Kingdom      |           | (-0.0001 to 0.0030)     |  |
| 4    | Germany      | 0.0005    | (0 00005 to 0 0010)               | 4          | Greece       | 0.0011    | (-0 0003 to 0 0024)     |  |
| 5    | Switzerland  | 0.0003    | (-0.0011 to 0.0017)               | 5          | Norway       | 0 0005    | (-0 0024 to 0 0034)     |  |
|      |              |           |                                   | _          |              | -0 0004   |                         |  |
| 6    | Belgium      | 0.0001    | (-0.0013 to 0.0016)               | 6          | Switzerland  |           | (-0 0013 to 0 0005)     |  |
| 7    | Sweden       | -0 ·000 I | (-0.0016  to  0.0015)             | 7          | Italy        | -0.0005   | (-0 0018 to 0 0007)     |  |
| 8    | Spain        | -0 ·000 I | (-0.0016 to 0.0013)               | 8          | Hungary      | -0 0006   | (-0 0050 to 0 0038)     |  |
| •    |              | 0.0004    |                                   |            | NI .I I I    | -0 .0008  |                         |  |
| 9    | INetherlands | -0.0004   | (-0.0013  to  0.0006)             | 9          | INetherlands | 0.0000    | (-0.0024  to  0.0009)   |  |
| 10   | France       | -0.0004   | $(-0.0017 \pm 0.0003)$            | 10         | Sweden       | -0.0008   | (-0.0029  to  0.0013)   |  |
|      | Italy        | -0.0007   | (-0.0017 to 0.0004)               | 11         | Austria      | -0.0012   | (-0.0027  to  0.0003)   |  |
| 12   | Czechia      | -0 ·0008  | (-0.0022 to 0.0007)               | 12         | Germany      | -0.0014   | (-0.0022 to -0.0005)    |  |
| 13   | Austria      | -0 0008   | (-0.0023 to 0.0008)               | 13         | Belgium      | -0.0014   | (-0.0028 to -0.0001)    |  |
| 14   | Greece       | -0 0008   | (-0.0023 to 0.0008)               | 14         | Spain        | -0 ·003 I | (-0.0050 to -0.0012)    |  |
| 15   | Norway       | -0 0009   | (-0 0023 to 0 0005)               | 15         | Czechia      | -0.0039   | (-0 0062 to -0 0016)    |  |
| 16   | Portugal     | -0.0012   | (-0 0045 to 0 0022)               | 16         | Finland      | -0 0043   | (-0 0110 to 0 0025)     |  |
| 17   | Denmark      | -0.0012   | (-0 0033 to 0 0009)               | 17         | France       | -0 0046   | (-0 0065 to -0 0026)    |  |
| 18   | Poland       | -0 0023   | (-0 0041 to -0 0006)              |            | Poland       | -0 0047   | (-0 0068 to -0 0026)    |  |
| 19   | Romania      | -0.0024   | (-0.0045 to -0.0004)              | <b>I</b> 9 | Denmark      | -0 ·005 I | (-0.0083  to  -0.0020)  |  |
| 20   | Bulgaria     | -0.0026   | (-0.0070 to 0.0017)               | 20         | Portugal     | -0 0063   | (-0.0122  to  -0.0003)  |  |
|      |              |           | •••                               |            |              |           | ····                    |  |
|      | EEA          | -0 0026   | (-0.0035 to 0.0018)               |            | EEA          | -0 0037   | (-0.0053 to -0.0021)    |  |

## CONCLUSIONS I.

- Relative and absolute disparities in premature mortality rates are evident across regions of the EEA, both within countries and across the entire region.
- Insights from the study guide the development of targeted regional policies and resource allocation to address health disparities, as national estimates may overlook subnational inequalities.

## CONCLUSIONS II.

- Recognizing regional health disparities helps inform equitable distribution of health resources, emphasizing the importance of small-scale regional policies.
- The findings support EU cohesion policy goals, highlighting the need to invest in health to address economic and social disparities for regional development and competitiveness.

#### THANK YOU FOR YOUR ATTENTION

<u>Varga.orsolya@med.unideb.hu</u>

THE LANCET Public Health This journal Journals Publish Clinical Global health Multimedia **Events** About 🛃 Download Full Issue ARTICLES · Volume 9, Issue 3, E166-E177, March 2024 · Open Access Subnational inequalities in years of life lost and associations with socioeconomic factors in pre-pandemic Europe, 2009–19: an ecological study José Chen-Xu, MD<sup>a,b,†</sup> · Orsolya Varga, PhD<sup>c,d,†</sup> · Nour Mahrouseh, MPH<sup>c</sup> · Prof Terje Andreas Eikemo, PhD<sup>e</sup> · Diana A Grad, MPH<sup>f</sup> · Grant M A Wyper, PhD<sup>g,h.</sup> et al. Show more